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Abstract: Lack of guidance for interpreting the definitions of endangered and threatened in the U.S. Endan-
gered Species Act (ESA) has resulted in case-by-case decision making leaving the process vulnerable to being
considered arbitrary or capricious. Adopting quantitative decision rules would remedy this but requires the
agency to specify the relative urgency concerning extinction events over time, cutoff risk values corresponding
to different levels of protection, and the importance given to different types of listing errors. We tested the
performance of 3 sets of decision rules that use alternative functions for weighting the relative urgency of
future extinction events: a threshold rule set, which uses a decision rule of x% probability of extinction over
y years; a concave rule set, where the relative importance of future extinction events declines exponentially
over time; and a shoulder rule set that uses a sigmoid shape function, where relative importance declines
slowly at first and then more rapidly. We obtained decision cutoffs by interviewing several biologists and then
emulated the listing process with simulations that covered a range of extinction risks typical of ESA listing
decisions. We evaluated performance of the decision rules under different data quantities and qualities on
the basis of the relative importance of misclassification errors. Although there was little difference between
the performance of alternative decision rules for correct listings, the distribution of misclassifications differed
depending on the function used. Misclassifications for the threshold and concave listing criteria resulted in
more overprotection errors, particularly as uncertainty increased, whereas errors for the shoulder listing
criteria were more symmetrical. We developed and tested the framework for quantitative decision rules for
listing species under the U.S. ESA. If policy values can be agreed on, use of this framework would improve the
implementation of the ESA by increasing transparency and consistency.
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Evaluando Reglas de Decisión para Categorizar el Riesgo de Extinción de Especies con el Fin de Desarrollar de
Criterios Cuantitativos de Alistamiento en el Acta de Especies en Peligro de los EE. UU.

Resumen: La falta de orientación para interpretar las definiciones de en peligro y amenazada en el Acta
de Especies en Peligro de E.U.A. ha resultado en la toma de decisiones caso por caso, con lo cual el proceso
es vulnerable para ser considerado arbitrario o caprichoso. La adopción de reglas de decisión cuantitativas
podŕıa remediar esta situación pero requiere la especificación por parte de la agencia de la urgencia relativa
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2 Decision Rules for Listing Species

concerniente a eventos de extinción en el tiempo, los valores de corte de riesgo correspondientes a diferentes
niveles de protección y la importancia otorgada a diferentes tipos de errores de enlistado. Probamos el
funcionamiento de 3 conjuntos de reglas de decisión que usan funciones alternativas para ponderar la
urgencia relativa de eventos de extinción futuros: un conjunto de reglas umbral, que utiliza una regla de
decisión de x% de probabilidad de extinción en y años; un conjunto de reglas cóncavo, en el que la importancia
relativa de los eventos de extinción futuros declina exponencialmente en el tiempo; y un conjunto de reglas que
utiliza una función de forma sigmoidea, en donde la importancia relativa declina lentamente al principio y
más rápido posteriormente. Obtuvimos valores de corte de decisiones mediante entrevistas con varios biólogos
y luego emulamos el proceso de enlistado con simulaciones que cubrieron un rango de riesgos de extinción
t́ıpico de las decisiones de enlistado del AEP. Evaluamos el funcionamiento de las reglas de decisión bajo
cantidades y calidades diferentes de datos con base en la importancia relativa de los errores de clasificación.
Aunque hubo poca diferencia entre el funcionamiento de las reglas de decisión alternativas para enlistados
correctos, la distribución de errores de clasificación difirió dependiendo de la función utilizada. Los errores de
clasificación para los criterios umbral y cóncavo resultaron en errores de sobreprotección, particularmente
a medida que incrementó la incertidumbre, mientras que los errores de la función sigmoidea fueron más
simétricos. Desarrollamos y probamos un marco de referencia para reglas de decisión cuantitativas para
enlistar especies en el Acta de Especies en Peligro de los EE. UU. Si se logran acuerdos sobre los valores
para establecer poĺıticas, el uso de este marco de referencia podŕıa mejorar la implementación del AEP al
incrementar la transparencia y consistencia.

Palabras Clave: análisis bayesiano, análisis de viabilidad poblacional, pruebas de rendimiento

Introduction

The U.S. Endangered Species Act (ESA) of 1973 is one of
the most powerful and influential environmental laws in
the United States (Bean 2009). Under the ESA a species
can be categorized as endangered (in danger of extinc-
tion throughout all or a significant portion of its range),
threatened (likely to become endangered in the foresee-
able future), or not warranted (16 U.S.C. §§ 1532). The
conservation and economic consequences of the law’s
protections have motivated litigation challenging many
listing decisions (Doremus 2006). Such litigation can re-
sult in substantial costs to the government agencies that
implement the ESA and reduce the amount of funding
available to mitigate threats to endangered species or to
assess species that may warrant protection (Miller et al.
2002; Wilcove & Master 2005).

The ESA requires that listing decisions be based solely
on the best scientific and commercial data available to
avoid any social or economic implications influencing
the decision (Bean 2009). Science can estimate the prob-
ability that a species will become extinct over time, but
a listing decision also requires value judgments about the
level of extinction risk that warrants protection under the
act (Doremus 1997). Currently, there are no policy guide-
lines for interpreting the vague definitions of endangered
or threatened or on how much extinction risk warrants
protection, and agency decision makers make these value
judgments on a case-by-case basis. This element of the list-
ing process lacks transparency and consistency and is the
reason some consider the process arbitrary or capricious
(Robbins 2009).

An alternative to the current approach is to devise
quantitative decision rules on which to base the risk of

extinction that could be applied to all species consid-
ered for listing, but this approach would require being
explicit about the value judgments regarding the timing
and amount of extinction risk that would trigger listing.
Several quantitative thresholds have been suggested for
acceptable levels of extinction risk within particular time
frames, including endangered if the probability of extinc-
tion is greater ≥1% in 1000 years (Shaffer 1981), ≥5%
in 100 years (Shaffer 1983), ≥1% in 100 years (Angliss
et al. 2001), ≥20% within 20 years or 5 generations
(IUCN 2001), and ≥15% in 100 years (Goodman 2002a).
However, none of these thresholds have been formally
adopted into ESA policy.

The primary goal of the ESA is to protect species from
extinction (Goble et al. 2006). It is impractical to list all
species; thus, an operational goal of the ESA is to identify
those species more likely to go extinct in the near future
than species likely to go extinct in the distant future.
Decision rules such as “endangered if the probability of
extinction is >x% in y years” can capture this urgency,
but it is unclear whether the sharp time threshold of y
years fully represents how society weighs the importance
of future extinction events. In practical terms, this type
of decision rule implies that all possible extinction events
up until the time threshold of y years have the same level
of urgency. After this time threshold, any likelihood of
extinction is not considered. This could be problematic in
identifying borderline cases or identifying species where
the effect of a threat has a long time lag.

In other disciplines, such as decision analysis and eco-
nomics, weighting the relative importance of uncertain
future events is commonplace and is known as time
preferences, or time discounting (Price 1993; Frederick
et al. 2002). Rather than using sharp time thresholds, the
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Regan et al. 3

Figure 1. Expected loss of future extinction events as a
function of time to extinction (in years) for a
threshold function (dashed line, relative importance
of future extinction events equal until time threshold,
then drop to zero); concave function (dotted line,
relative importance of future extinction events
declines exponentially over time); and shoulder
function (solid line, sigmoid-shape function for which
relative importance declines slowly at first and then
more rapidly later). Expected loss is a relative
measure between zero and one and time to extinction
is in years.

importance of future events are weighted according to
a discount rate that captures the relative importance of
events that occur in the near, medium, and far term.
Although any extinction event is a tragedy, time pref-
erences could be applied to decision rules for listing
species, could be used to identify those species in more
urgent need of protection, and may better capture soci-
ety’s concern about future extinction events than a sharp
time threshold.

We explored how future time preferences can be
scaled in a rational way to devise decision rules for listing
species under the ESA. In particular, we investigated the
properties and performance of 3 alternative sets of de-
cision rules devised from different functions for weight-
ing the relative importance of future extinction events: a
threshold rule set, in which a decision rule of x% proba-
bility of extinction over y years is applied; a concave rule
set, in which the relative importance of future extinction
events declines exponentially over time; and a shoulder
rule set, which assumes a sigmoid shape function and
relative importance of future extinction events declines
slowly at first and then more rapidly over time (Fig. 1).
To define the level of risk associated with categories such
as endangered and threatened, we conducted an elici-
tation exercise with a number of scientists to generate
hypothetical values for these levels for testing purposes.
Although adoption of decision rules for listing species
under the ESA requires government agencies to adopt
policy parameters regarding the acceptability of different

levels of extinction risk, our objective was not to deter-
mine policy values for risk thresholds or specific time
preferences, but to determine possible implications and
consequences of different ways of estimating the relative
importance of future extinction events.

Ultimately the goal of the ESA is to list species that
warrant protection and not to list species that do not
need protection. Thus, a good decision rule for listing
species under the ESA would rank species according to
extinction risk and minimize misclassifications. This is
difficult because humans cannot predict intuitively the
behavior of complex systems with interacting compo-
nents, and uncertainty and incomplete information hin-
der one’s ability to understand the true status of the
system of interest. Quantitative listing criteria involve 3
main interactive components: a function that represents
the relative importance of extinction events over time;
decision cutoff values that correspond to different levels
of protection (i.e., endangered and threatened); and the
weight given to different types of errors (e.g., listing a
species that does not warrant protection and failing to
list a species that requires protection). We investigated
these interactive components for each of the alternative
sets of decision rules through computer simulations to
help policy makers better understand the behavior of
different sets of decision rules and how they perform
under uncertainty.

Exploring the behavior of alternative decision rules
with computer simulations is helpful because it forces
transparency in representation of a system. It allows a
comprehensive investigation of the effect of different
levels of uncertainty inherent in the decision-making pro-
cess by quantifying their effects on the performance of
alternative decision options (Harwood & Stokes 2003).
We refer to this method as performance testing. Perfor-
mance testing has been used to evaluate alternative man-
agement strategies in fisheries management (Cooke 1999;
Punt & Smith 1999), develop management procedures
for marine mammals (Cooke 1995; Taylor et al. 2000),
evaluate model uncertainty when classifying species at
risk (Taylor 1995), and to test the effect of observation
errors on extinction-risk estimates (Meir & Fagan 2000;
Taylor et al. 2002).

To evaluate performance of the 3 alternative sets of
decisions rules for ESA listing, we simulated the underly-
ing population dynamics for multiple species, assuming
perfect biological information, to generate the probabil-
ity distribution of time to extinction given only environ-
mental variation (i.e., the true probability of extinction).
We then simulated various schemes for data collection
and estimated the probability of extinction. Applying the
3 listing criteria to both the true and estimated fate of
species allowed us to evaluate the alternative decision
rules by comparing how well they correctly classified
species under uncertainty and by evaluating the con-
sequences of different types of misclassifications (i.e.,
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4 Decision Rules for Listing Species

listing a species that does not warrant protection and
failing to list a species that requires protection).

Methods

Alternative Decision Rules

We refer to the function that represents the relative im-
portance of future extinction events as a loss function,
represented as the expected loss as a function of time
(Fig. 1). A loss function associated with extinction is a
value judgment that represents how society’s concern
about species extinction changes as the projected time
of extinction becomes more distant. Estimating a loss
function requires formally eliciting value judgments re-
garding extinction and its timing. For this study, we used
an average loss function we derived from an elicitation
exercise focused on how biologists judge species endan-
germent. We refer to this loss function as the shoulder
function (Regan et al. 2009; Cochrane et al. 2011). To
investigate a more contrasting form of a loss function,
we chose a concave-shaped loss function, recommended
by the U.S. Congressional Budget Office for discounting
environmental and natural resources (see Supporting In-
formation for details of the parameterization on the loss
functions). For the threshold rules set, we used a time
horizon of 100 years and 150 years for endangered and
threatened, respectively. The 3 loss functions (threshold,
concave, and shoulder) captured a range of forms that
encapsulated various value judgments regarding extinc-
tion and revealed alternative behavior for each of the
decision rules (Fig. 1). We used the same loss function for
all species to ensure equal treatment across species. Use
of a different loss function for different species implies
the extinction of one species is deemed more or less
important than another.

Hypothetical policy values for decision cutoffs were
determined through an elicitation exercise with 8 scien-
tists familiar with the ESA listing process (Regan et al.
2009). The objective of the exercise was to identify a
set of species on which the scientists agreed with the
assigned threat categories (hereafter consensus species).
Each participant was asked to categorize 20 species as ei-
ther endangered, threatened, or not warranted for listing.
The species included birds, reptiles, plants, mammals,
and fish with different life histories and a nonzero prob-
ability of extinction within the next 500 years. Decision
cutoffs for each of the alternative listing criteria were
derived by ensuring all consensus species were placed
in the agreed-upon threat category (see Supporting In-
formation for details of the elicitation process and ex-
amples of the information given to participants). The
performance-testing method described hereafter does
not specifically follow a formal statistical decision anal-
ysis (Berger 1985), although we adopted some of the

concepts of statistical decision analysis for use in our deci-
sion rules, such as the use of loss functions and expected
loss.

Performance Testing

We simulated making listing decisions with perfect in-
formation (i.e., known functional form for the popula-
tion model and known values for all parameters thereof)
under each of the listing criteria and compared these
decisions with listing decisions made with uncertain in-
formation (i.e., known functional form for the population
model, but uncertain parameter values) (Fig. 2). This
process involved creating an assumed reality and then
simulating the underlying biological processes of interest:
the probability of extinction through time. We simulated
the set of consensus species and a set of cases that were
configured so the extinction risk would be near the cat-
egory boundaries (i.e., challenge cases). These challenge
cases were constructed to be both plausible and likely to
highlight performance differences among the alternative
listing criteria. Details of the population-dynamics model
are in Supporting Information.

We used a virtual biologist (Fig. 2) who did not know
the true values of the model parameters for the species.
This biologist collected and analyzed data and made in-
ferences on those parameters. We used 4 scenarios for
data collection in the performance testing. Each scenario
had data of different quantity and quality so we could de-
termine how the alternative decision rules performed un-
der different levels of uncertainty. The data have 2 types
of error, process error (i.e., environmental stochasticity)
and observation error (i.e., error due to random sampling
strategy). The data-gathering scenarios were data of high
quantity and quality (20 years of annual abundance esti-
mates with a coefficient of variation [CV] in observation
error of 0.1) (hereafter high and high); few data of high
quality (4 abundance estimates over the last 10 years
with CV = 0.1) (hereafter low and high); data of high
quantity and low quality (20 years of annual abundance
estimates with CV = 0.8) (hereafter high and low); and
data of low quantity and quality (4 abundance estimates
over the last 10 years with CV = 0.8) (hereafter low and
low). For each species, a trajectory was generated from
the population model that was conditional on the true
parameter values and that would result in an ending pop-
ulation size that matched the true population size. Log-
normal distributed observation error was then applied to
the time-series data. We assumed the distribution from
which individual observation errors were drawn had a
known coefficient of variation estimated from abundance
surveys. The data-generating procedure was repeated 100
times for each of the consensus species and 5000 times
for the challenge species for each of the data-generation
scenarios.
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Figure 2. Framework for
performance testing of
alternative listing criteria,
including definitions of
alternative listing criteria;
performance-testing algorithm
(dashed box); the assumed reality
of the underlying population
dynamics of species; the virtual
biologist, who collects and
analyzes data and estimates
model parameters; application of
the alternative listing criteria to
categorize species as endangered
(EN), threatened (TH), and not
warranted (NW); and the
performance evaluation that is
based on minimizing
misclassifications.

Parameter Estimation

The population-dynamics model for each species had 3
parameters: mean growth rate (r), standard deviation of
the process error (σ p), and the current population size
(N0). These were estimated with Bayesian analysis by
defining a prior for each of the parameters and a like-
lihood function. The probability distributions that were
defined for the challenge cases were used as prior distri-
butions for estimation. Broad, vague priors, for which the
likelihood was non-negligible, were used for the consen-
sus species. The data to estimate the parameters had both
process error and observation error. To account for these
2 types of error we derived a likelihood function with a
Kalman filter, an approximation of the fully state-spaced
models that are typically used for parameter estimation
when these 2 types of errors are present (Kalman 1960;
Meinhold & Singpurwalla 1983). Supporting Information
contains details and derivation of the likelihood function.
We used Bayesian inference software (D. Goodman, see
http://www.esg.montana.edu/) to estimate each of the
model parameters. The program manages Bayesian in-
ference for a small number of parameters based on an
algorithm that samples the prior and then weights each
sampled set of values of parameters by the likelihood,
cumulating histograms, and posterior summaries of the
sampled parameter values weighted accordingly.

We used a Bayesian population viability analysis (PVA)
and calculated a derived parameter of the time to ex-
tinction from the weighted set of sampled values: r and
σ p and N0. Results were summarized in a probability
distribution of time to extinction and incorporated all
the parameter uncertainty reflected in the data. The risk
of extinction given each loss function was calculated by

integrating through time the product of the probability
of extinction and the loss. Risks of extinction for the con-
cave and shoulder functions are unitless because the risk
is integrated over all time horizons (0–∞) (Supporting
Information). We then applied the alternative decision
rules to the true and estimated extinction risks to deter-
mine the corresponding threat categories. We developed
several subroutines in Fortran 90 to automate the entire
performance-testing process.

Performance Evaluation

Performance of the alternative decision rules was evalu-
ated by comparing the proportion of correct and incor-
rect listing decisions, whether the misclassifications were
over or under protection errors, and the magnitude of the
differences. To determine how value judgments affected
the performance of decision rules, we used misclassifi-
cation costs to weight different errors. These costs were
weights that denoted the relative degree of concern with
misclassification errors, not a literal or specific monetary
cost.

We examined 4 possible weighting systems. In the first
we assumed all misclassifications had equal weighting,
which means either the costs were equal or ignored. In
the second, we assumed a 2-category misclassification
(i.e., assessed as not warranted when truly endangered)
had twice the cost of a 1-category misclassification (i.e.,
assessed as not warranted when truly threatened). We
referred to this weighting system as symmetrical weights
because the weighting is the same whether the misclas-
sification is over- or underprotection for the species. We
also examined 2 precautionary weighting systems that
penalized misclassification asymmetrically by preferring
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6 Decision Rules for Listing Species

Table 1. Hypothetical policy values of extinction risk for classifying species as endangered, threatened, and not warranted for the 3 alternative
listing criteria.

Alternative listing criteria
∗

Listing category Threshold Shoulder Concave

Endangered probability of extinction ≥0.30 in
100 years (0.18–0.37)

extinction risk ≥0.54 (0.50–0.54) extinction risk ≥0.05 (0.05–0.06)

Threatened probability of extinction ≥0.08 in
150 years (0.001–0.100)

extinction risk ≥0.18 (0.02–0.18) extinction risk ≥0.01 (0.001–0.010)

Not warranted probability of extinction <0.08 in
150 years

extinction risk <0.18 extinction risk <0.01

∗Threshold, shoulder, and concave refer to the loss function for each listing criterion. Values in parentheses are ranges of extinction risk values
that ensure the consensus species are categorized correctly. Consensus species are the set of species for which there is an agreed-upon threat
category among a group of 8 scientists. The risks of extinction for the concave and shoulder functions are unitless because the risk is integrated
over all time horizons (0–∞). See Eq. (1) in Supporting Information.

overprotection to underprotection errors. The first was
similar to the symmetrical weight system in that it consid-
ered 1-category versus 2-category misclassifications; how-
ever, underprotection errors incurred twice the cost of
overprotection errors. We called the second precaution-
ary system list versus not list. In this system, endangered
and threatened were treated the same and weights were
assigned only to misclassification between either of those
categories and not warranted. Details of the weighting
systems are in Supporting Information.

Results

The elicitation exercise resulted in 13 consensus species,
5 endangered, 5 threatened, and 3 not warranted (Sup-
porting Information). The risks of extinction for these
species ranged from 0.00 to 1.00 (Supporting Infor-
mation). For all loss functions, a range of values al-
lowed the consensus species to be categorized correctly
(Table 1). The resulting hypothetical policy values for
performance testing were those that maximized the num-
ber of identical listings across the 3 alternatives for the
challenge simulations but were still within the range
that would correctly categorize the consensus species
(Table 1).

The performance testing for the consensus species
and the challenge scenarios resulted in similar outcomes;
thus, results presented here were based on a combined
summary. We present results for some individual con-
sensus species to highlight specific performance issues
(full results in Regan et al. [2009]). The 3 alternative
listing criteria produced roughly the same proportion of
correct decisions (Fig. 3). The shoulder rule set had con-
sistently higher proportions of correct decisions relative
to the threshold and concave decision rules, but only
marginally. When the quantity and quality of data were
good (high-and-high data scenario), approximately 70%
of species were classified correctly. The percentage of
correctly classified species decreased as data availability
and precision decreased. When the quality and quantity

of data were poor (low-and-low data scenario), 40% of
species were classified correctly for each of the alterna-
tive listing criteria. These percentages do not represent
performance of actual listing cases; rather, they are chal-
lenge cases chosen to highlight the differences between
the decision rules.

Although the proportions of correct decisions were
similar across the 3 alternatives for the 4 data scenarios,
the distribution of misclassifications differed depending
on the rule set used. Misclassifications under the shoulder
rule set tended to be symmetrical across the data sce-
narios, with roughly similar proportions of over- and un-
derprotection errors, whereas the threshold and concave
listing criteria tended to have more overprotection errors
than underprotection errors. These trends became more
prominent as data availability and precision decreased.
For example, under the low-and-low data scenario, the
threshold and concave rules had 87% and 92% of the
misclassifications as overprotection errors, respectively,
whereas 53% of the misclassifications for the shoulder
rule set were overprotection errors. Most of the misclas-
sifications were 1-category errors. For the high-and-high
data scenario the 2-category errors ranged from 3% to
5% of the misclassifications across the 3 listing criteria,
whereas for the low-and-low data scenario, the thresh-
old and concave listing criteria had more 2-category
errors (25% and 29%, respectively) than the shoulder
rules (8%).

A similar pattern for the alternative listing criteria oc-
curred in simulations for individual consensus species.
We present results for 3 consensus species, passerine
(endangered), pinniped 2 (threatened), and tortoise (not
warranted) (Table 2), that represented the most challeng-
ing cases in which extinction risks were closest to the cut-
offs between risk categories. The threshold and concave
listing criteria were the most protective, which resulted
in incorrectly listing the tortoise (not warranted) 49%
and 39% of the time, respectively, even under the high-
and-high data scenario. Under the low-and-low data sce-
nario, the tortoise was correctly listed as not warranted
6% and 4% of the time for the threshold and concave
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Figure 3. Proportion of correct and incorrect listing decisions on the basis of true and estimated extinction risks
for the 3 alternative listing criteria for all species for different data scenarios (high–high, high quantity and
quality; low–high, low quantity and high quality; high–low, high quantity and low quality; low–low, low quantity
and quality). Zero deviations are correct decisions, positive deviations are overprotection errors, and negative
deviations are underprotection errors. Threshold, shoulder, and concave are the alternative listing criteria that are
based on the 3 loss functions investigated.

Table 2. Percentage of correct and incorrect listings for 3 consensus
speciesa that represent the most challenging cases in which true extinc-
tion risks are closest to the decision cutoffs between threat categoriesb

for 2 data scenarios.

Threshold Shoulder Concave
function function function

Scenario
species EN TH NW EN TH NW EN TH NW

High–highc

passerine 58d 46 6 43d 38 19 59d 35 6
pinniped 2 13 64d 23 4 51d 45 13 53d 34
tortoise 1 48 51d 0 21 79d 2 37 61d

Low–low
passerine 48d 50 2 18d 57 25 66d 34 0
pinniped 2 36 62d 2 9 57d 34 49 50d 1
tortoise 21 73 6d 3 44 53d 27 69 4d

aConsensus species are the set of species for which there is an agreed-
upon threat category among a group of 8 scientists. Passerine (EN),
pinniped 2 (TH) and tortoise (NW).
bAbbreviations: EN, endangered; TH, threatened; NW, not warranted.
cHigh–high, data of high quantity and quality; low–low, data of low
quantity and quality.
dPercentage of correct listings.

listing criteria, respectively. The threatened pinniped
2 had similar correct listings under the high-and-high and
low-and-low data scenarios for the threshold and con-

cave listing criteria, but there was a large shift in the
errors from greater underprotection errors for the high-
and-high data scenario to larger overprotection errors for
the low-and-low data scenario. For the shoulder rule set,
the error distribution was similar for both data scenarios.
For the concave rule set, the endangered passerine was
correctly categorized more often under the low-and-low
data scenario than the high-and-high data scenario due
to this rule’s tendency to be more precautionary under
uncertainty.

When the consequences of incorrect decisions were
not specified (i.e., implying equal weighting for all mis-
classifications), the shoulder rule set resulted in the best
net performance with minimum relative costs for all data
scenarios (Fig. 4). The shoulder rule set also had the
lowest relative costs when weights were higher for 2-
category errors under the symmetrical weighting. How-
ever, when the consequences of misclassifications were
weighted in a precautionary manner (i.e., precautionary
and list vs. not-list weighting systems) the threshold and
concave rules were optimal. This was apparent for all
data scenarios. The difference between the relative costs
for the concave and threshold rules was minimal for
the precautionary and the list versus not-list weighting
structures.

Conservation Biology
Volume xx, No. x, 2013



8 Decision Rules for Listing Species

Figure 4. Relative costs of 4 weighting systems of listing misclassification (equal, costs of misclassification are
equal or ignored; symmetrical, 2-category misclassification has twice the cost as a 1-category misclassification;
precautionary, underprotection errors are twice as costly as overprotection errors; list versus not list, endangered
and threatened are treated the same and weights are assigned only to misclassification of those categories and not
warranted) for each of 3 alternative listing criteria under 4 alternative data-quality and data-quantity scenarios
(1, high quantity and quality; 2, high quantity and low quality; 3, low quantity and high quality; 4, low quantity
and quality). Within a weighting system the best performer has the lowest costs.

Discussion

Adopting a quantitative approach to listing species under
the ESA that is more objective, consistent, and transpar-
ent may reduce controversies and delays arising with in-
dividual listing decisions, but such an approach requires
advance policy decisions regarding the relative impor-
tance of future extinction events through specification
of a loss function, explicit values for acceptable levels of
extinction risk across species, and how misclassification
errors are weighted. Our framework applies hypothetical
policy values to an investigation of the performance of
alternative sets of quantitative decision rules that can be
used to list species under the ESA. The alternative listing
criteria performed similarly with respect to the number of
correct listings, even as uncertainty increased. This was
an unanticipated result and may have been due in part
to the careful design of the alternative decision rules,
ensuring they were equivalent on the basis of a set of
consensus species prior to performance testing. This is

an encouraging result because the rate of correct listings
was largely not affected by the form of the loss function,
at least for the loss functions we examined.

The form of the loss function did have an effect on
misclassification. The misclassifications for the shoul-
der function tended to be equally distributed between
over- and underprotection errors even as uncertainty in-
creased. Although this symmetry may be preferable to the
threshold or concave functions, for which misclassifica-
tions were more skewed toward overprotection errors,
it may become less desirable when the consequences
of misclassifications are considered. These consequences
include not identifying a species that is in need of pro-
tection and protecting a species that does not warrant
it. The relative weighting of under- and overprotection
errors is also a policy choice. Although the actual conse-
quences of over- and underprotection errors associated
with the listing process depends largely on the situa-
tion, we have provided some relative measures of the
consequences so that the implications of a particular
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policy stance are clear. That is, when a precautionary
approach to listing is preferred (i.e., erring on the side
of overprotection rather than underprotection), then the
threshold and concave rules sets are desirable. The shoul-
der rule set is more desirable if policy values favor either
equal weight for both types of errors or favor underpro-
tecting species.

The error rates for the 3 alternative decision rules
were roughly 30% for the high-and-high data scenario
and around 60% for the low-and-low data scenario. These
error rates do not reflect actual ESA listing decisions be-
cause the species that were used to test the alternative
decision rules were not actual species that were sub-
ject to petitions and status reviews and we constrained
the performance to a set of challenge cases that would
highlight performance close to the category boundaries.
Furthermore, we only tested 4 data quality and quantity
scenarios. In reality there would be a continuum of un-
certainty in data quality and quantity. The actual error
rate in listing decisions is impossible to know because
the current listing process is done in a less systematic
and transparent way. Consequently, the actual error rate
could potentially be higher than we observed. Never-
theless, the magnitude of the errors, particularly for the
low-and-low data scenario, may concern decision mak-
ers. The poor performance in classifying the low-and-
low data scenarios was similar for decision rules that
used near-extinction levels of 50 and 250 breeding in-
dividuals (Regan et al. 2009). This was somewhat sur-
prising because these decision rules shortened the time
horizon to 50 years for endangered and 100 years for
threatened, which gives a shorter period for the uncer-
tain growth rates to be projected into the future and
potentially result in reaching the near-extinction thresh-
old. Although no set of quantitative decision rules can
fully compensate for information gaps, particularly when
trends are completely unknown, important contributions
of our performance-testing process presented include
the insights into the relative magnitude and direction
of misclassifications and the provision of a framework to
investigate and provide recommendations for minimum
amounts of data necessary for listing decisions. We sug-
gest potential alternatives to making listing decisions for
data-poor cases, such as prioritizing research funding so
as to reduce uncertainty for cases with the highest risk
as indicated by threats.

We estimated population parameters with a Kalman
filter to account for both process error and observation er-
ror. This is not common practice when estimating param-
eters for PVA models. Instead, the observation error is of-
ten subsumed in the process-error term; thus, the amount
of variation in environmental noise is overestimated. This
will generally result is higher estimates of the probability
of extinction and more overprotection errors (Morris &
Doak 2002; Drake & Lodge 2004). Although this may also
reduce the number of underprotection errors in some

cases, we do not advocate ignoring observation error as a
means of reducing classification errors. We used Bayesian
estimation methods to account for parameter uncertainty
so that the full extent of parameter uncertainty was prop-
agated faithfully through to the posterior distribution of
the derived parameter (probability of time to extinction).
An advantage of this approach is that one can use prior
information about the species to help improve precision
of parameter estimates (McCarthy & Masters 2005). Al-
though PVA models with posterior distributions are not
common in the PVA literature, they have been advocated
for classifying species because parameter uncertainty is
directly incorporated into the probability distribution of
time to extinction. Thus, one does not have to use point
estimates and perform sensitivity analyses (Wade 1999;
Goodman 2002b; Taylor et al. 2002).

We calculated the probability of extinction with re-
spect to time in years rather than generations. Using years
makes ESA implementation technically easier, but has
the side effect of potentially treating long-lived species
with less precaution. Conversely, one could argue that
measuring time in units of generations rather than years
could mean that long-lived species are valued more highly
than short-lived ones, resulting in unequal treatment of
species. O’Grady et al. (2008) reported that extinction
risk, measured as a minimum viable population size,
scaled better to generations than years. We report results
using absolute extinction risk here, but results with near-
extinction default values of 50 and 250 mature adults
are given in Regan et al. (2009), which revealed similar
patterns. However, use of a near-extinction value could
result in different listing decisions for long-lived species
that may remain extant at a few individuals for decades. It
could also result in a process with shorter time horizons,
which might lead to a better risk ranking of species than
use of longer time scales that increase uncertainty in prob-
ability of extinction estimates (Feiberg & Ellner 2001).

Adopting quantitative decision rules for the ESA listing
process would be a step forward in the conservation
of threatened species. Choosing the most appropriate
set of decision rules requires consideration of the loss
incurred from possible extinction events, the relative
consequences of misclassifications, performance under
uncertainty, and ease of implementation. Although the
use of a continuous loss function, like the shoulder or
concave functions, may be a more realistic representation
of the actual human perception of the loss incurred from
possible extinction events, the threshold function may
be easier to explain and implement because this form
of decision rule is widely understood and accepted by
conservation professionals. Our results provide a clearer
understanding of the consequences of adopting one set of
decision rules over another and is the first of many steps
required to develop a more systematic listing process. We
acknowledge that quantitative data to derive extinction
risk estimates are not available for many species. The
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classification process will also need to include criteria of
tested proxies that equate with the chosen quantitative
decision rules. We anticipate that practical implementa-
tion of these rules would require detailed guidelines that
would allow agency biologists to efficiently and effec-
tively apply the quantitative definitions (standards) and
their proxies across a great variety of species and data
types. As a next step, we recommend use of quantita-
tive decision rules in a retrospective analysis of currently
listed species followed by the development of appro-
priate and well-tested proxy criteria that can serve as
a substitute for these rules when there are insufficient
data to estimate extinction risk directly. Such an analysis
would complement and refine the research presented
here and illustrate the feasibility of implementing quanti-
tative decision rules under the ESA.
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